Learning Macro-actions for State-Space Planning

نویسندگان

  • Sandra Castellanos-Paez
  • Damien Pellier
  • Humbert Fiorino
  • Sylvie Pesty
چکیده

Planning has achieved significant progress in recent years. Among the various approaches to scale up plan synthesis, the use of macro-actions has been widely explored. As a first stage towards the development of a solution to learn on-line macro-actions, we propose an algorithm to identify useful macro-actions based on data mining techniques. The integration in the planning search of these learned macro-actions shows significant improvements over four classical planning benchmarks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning Search Heuristics for Classical Planning with Macro Actions

This paper proposes a new approach to improve domain independent heuristic state space search planners for classical planning by tuning the search heuristics using macro actions of length two extracted from sample plans. This idea is implemented in the planner AltAlt and the new planner Macro-AltAlt is tested on the domains introduced for the learning track of the International Planning Competi...

متن کامل

A Multi-Heuristic framework for Humanoid Planning

Humanoid robots have been the subject of active research for several years, with the aim of developing systems that can potentially replace humans in performing dangerous tasks with similar agility and versatility. Motion planning for humanoid robots is a particularly challenging problem because of the high-dimensionality of the planning space, kinematic constraints and stability. The general a...

متن کامل

A Method for Learning Macro-Actions for Virtual Characters Using Programming by Demonstration and Reinforcement Learning

The decision-making by agents in games is commonly based on reinforcement learning. To improve the quality of agents, it is necessary to solve the problems of the time and state space that are required for learning. Such problems can be solved by Macro-Actions, which are defined and executed by a sequence of primitive actions. In this line of research, the learning time is reduced by cutting do...

متن کامل

Roles of Macro - Actions in Accelerating Reinforcement

We analyze the use of built-in policies, or macro-actions, as a form of domain knowledge that can improve the speed and scaling of reinforcement learning algorithms. Such macro-actions are often used in robotics, and macro-operators are also well-known as an aid to state-space search in AI systems. The macro-actions we consider are closed-loop policies with termination conditions. The macro-act...

متن کامل

Planning with Closed-Loop Macro Actions

Planning and learning at multiple levels of tempo ral abstraction is a key problem for arti cial intelli gence In this paper we summarize an approach to this problem based on the mathematical framework of Markov decision processes and reinforcement learn ing Conventional model based reinforcement learning uses primitive actions that last one time step and that can be modeled independently of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.02293  شماره 

صفحات  -

تاریخ انتشار 2016